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THE HYDROGEN LINES NEAR THE BALMER LIMIT. 

A. Pannekoek, Assoc. R.A.S. 

i. It is well known that in ^celestial spectra only a limited number of 
hydrogen lines of the Baimer series is visible ; near the series limit they 
merge and at last are effaced, a continuous spectrum making its appearance 
a good deal on the long wave-length side of the theoretical limit. In the , 
spectrum of ordinary A-type stars not more than 20 lines can be distinguished; 
Menzel gives 29 lines (up to H31) for the chromospheric spectrum. 

The disappearance of the higher members of the Balmer series is not 
exclusively due to their merging ; other influences are at work. H. P. 
Robertson and Jane M. Dewey * have treated the disturbance of the higher 
electron orbits by the electric fields due to free electrons or ions coming near 
to the atom. The disturbed orbits cannot be quantized, and the transition 
to or from the second level takes place in the form of continuous absorption 
or emission. Thus line radiation is changed into continuous radiation. 

The theory of this effect is treated in the same way as the theory of the 
Stark effect. We introduce parabolic co-ordinates £ and r¡, defining a point 
in a meridian plane containing the direction of the electric field by the 
parameters of two parabolas intersecting at that point. The 3rd co-ordinate 
is the equatorial angular co-ordinate </>. Then we have the quantum 
conditions 

= ^ _^2 + 2ai^ + 2m^2 - meFèz =n1h, 

={“v/ ~P<}>2 + 2'a27] + 2'mffî7)2 + meF7iz ==nJl> 

where 0^ + a2 = zmé1, W is the (negative) total energy of the electron, and F 
is the field strength. In order to reduce these expressions to dimensionless 
numerical values, we express the co-ordinates £, rj in terms of the radius a0 

of the lowest orbit as unit. Then replacing and a2 by zy^me^ and zytfne2, 

(ri + y2 = I), and considering that =?Z32A2/4772, me2a0=h2l^7T2, zmWa0
2 

= - A2/47727z2, and mea0
s = (a0

2/e)A2/4772, which we denote by Eh2¡/\.7T2 {E = 5-846 
x 10-8), we find 

_Ä_j*d£ 

ztt) t 
- nz

2 + 4yi£ -i2-W=nA 
n2 

h Cdr] I 

277J rj V 
-ns

2 + 4y277 -—2r)
2 + EFrf = njt. 

n 

(2) 

When there is no electric field the integration can be easily performed 
and results in the relations yi =(^i +2^3)/^ y2 = (n2 + &tz)ln \ hence ^ + ^2 

* Physical Review, 31, 973, 1928. 
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1938 Supp. The Hydrogen Lines near the Balmer Limit 695 

+ nz=n. In the case of an electric field the term with F must be compensated 
by a change in W, determined by (n2 - n-^n ; this is the ordinary Stark effect. 
Hence in our expressions (2) the coefficient of £2 or 772, coming from ÍF, is not 
exactly equal to A2/47T2n2, but deviates from this normal value by the amount 

= 3EF(n2 - n^nh2/^2. In our first approximation we may neglect 
this deviation and make use of equations (2). Denoting the 3rd degree 
expressions under the root by /(!), f(v)y the integration extends over the 
positive range of/, between the limits where/ = o. In fig. 1 such curves are 
drawn ; the parabola F =0 denotes the curve without field for a certain y ; 
£^2 and 7)^2 are the limits for the £ and the rj curve. 

This holds as long as the positive part of the / curves is limited by two 

zero points. As soon as this condition ceases to be fulfilled, the orbits will 
degenerate. This can take place in two different ways, indicated by the 
dashed curves in fig. 1. Firstly, when by the increase of F the f(rj) curve 
rises so much that its minimum remains above the zero line; then the 
integration from extends to oc, the orbit cannot be quantized any more 
and the line radiation changes into continuous radiation. Secondly, when 
by the increase of F the /(£) curve falls so low that its maximum remains 
below the zero line ; then the intersection points disappear and no 
l-integral is possible. So we find two limiting conditions for the existence 
of quantized orbits : one that f(rj) should have a minimum < o, the other 
that /(I) should have a maximum > o. Expressing them by means of the 
coefficients of (2) we find : 

2jn2(EF)2\n 
i8y2i?jF -7z3 

2j(EF)2\n 

i 
— -i2y2EF) < o 

2^n\EF)2W 
- + i%y1EF)-nz

2 + 
2y{EF)2^n 

(^-condition), 

1 + i2y1EF\ > o 

(^-condition)., 

(3) 

* These equations correspond to the 2nd and 3rd of equations 13, p. 975, of 
Robertson and Dewey. Their a2/A is identical with our 1 -&2 of (4). 
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The numerical computation for the ^-condition was made in the following 
way. We put : 

i2y2n
4¡EF = i -k2 ; 

then (~kz - -§£2 + 2O < ^^{EFf 

is the condition for line radiation. The term on the right of the inequality 
is (the extreme case of very strong fields excepted) a small quantity ; hence 
the dissolution of the line takes place when the left-hand side \ - k3 

reaches a small positive value A. For k increasing from o to 0-5 this function 
decreases from 0-5 to o, whereas 1 -&2 in the same time decreases from 1 to 
0-75. The change therefore takes place for 1 -£2=o*75+|A, only a small 
amount above 0-75. In first approximation, hence, the dissolution of the 
line begins for 

i2y2w4£i?=o-75(+|A). (5) 

Introducing the numerical value = 7*016 x io-7F, and solving for y2, 
we find y2 = 106*9 x io%_4/F. So we have for 

F = 535 2I4 io7 53 21 67 e.s.u. 
forfl = io y2=0*20 0*50 1,0 

n=20 0*03 0*06 o*i2 0*31 i*o 
with A =0*05 0*008 0*002 (for n = 10).* 

In this computation of A we took w3 = 2 because transitions between the nth. 
and the 2nd level are only possible for = 1, 2 or 3. The quantity y2 denotes 
a fraction of the total breadth of the Stark pattern of the line ; for nz = i we 
have y2 = i ¡2n for the extreme red components, increasing to 1 - 1 ¡2n for the 
extreme violet components. All the Stark components with y2 below the 
values computed above from (5) persist as separate lines, whereas the com- 
ponents with y2 above these values are dissolved. So we see that, with 
increasing field strength, first the extreme red components disappear, then 
gradually the dissolving process proceeds toward the smaller wave-lengths, 
and the extreme violet components are the last to be attacked. This is in 
accordance with the experiments of Rausch von Traubenberg,f who saw 
in a field of nearly F = 2300 e.s.u. ( =700,000 volt/cm.) the line Hy split up in 
a bundle of lines which in the inhomogeneous field was cut off obliquely, so 
that the violet components persisted longer than the red ones. 

For the ^-condition we introduce an analogous substitution : 

\2yyrftEF = k2 - 1 ; k3-^k2+ \> ^n2n\EFf. (6) 

For moderate fields, where £ is a small amount above 1, we find that the 
transition point is independent of EF and for any field strength is determined 
by y! =^nzjn. For this value of y± the function/(£) with F =0 has a maximum 
exactly on the zero line, giving a constant ^ for this orbit. It is clear that 

* The condition for the limit, of continuous radiation, given by R. and D. 
(form 21', p. 977), usually quoted in the simplified form: | IT | < zeVeF> corresponds 
to (5) for the case 72 = 1* 

f Die Naturwissenschaften, 18, 417, 1930. 
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any trace of an electric field brings this maximum below the zero line and 
destroys the orbit, which is in fact the one giving rise to the extreme violet 
component of the Stark pattern. The other orbits can be dissolved by the 
£ condition only in the case of strong fields, increasing the (J?F)2 term above 
Ä3. By elimination of EF we find 

ri2> 
(&2-i)2 

\n) 32 Æ3 --p2 + -| 

Assuming, for instance, nz\n =o-i this leads to the numerical values 

k = 2 5 10 20 

yi > 0058 0-078 0-104 0-145 
F = 7400 44000 140000 400000 

These values of F, necessary to destroy only a small part of the pattern, are 
so large that they have no practical importance for our problem. So the 
^-condition does not affect the visibility of the lines in another way than 
already indicated for the extreme violet component. 

2. It was not necessary in these computations to proceed to a second 
approximation, because for an exact treatment it is better to make use of the 
work of C. Lanczos.* Although the subjects of the papers are apparently 
different—for Robertson and Dewey the origin of the continuous spectrum, 
for Lanczos the weakening of the lines—they treat, in reality, the same 
question, the transformation of line radiation into continuous radiation ; and 
they proceed from the same equations. Their method of treatment, however, 
is different, one by quantum mechanics, the other by wave mechanics ; the 
latter allows exact computations of intensities. In the wave-mechanical 
treatment there is no sharp limit between existence and non-existence of the 
line ; before the quantum-mechanical limit is reached a kind of pre-dis- 
solution begins to take place, and the existence of the line gradually dwindles 
after the limit is passed. Lanczos introduces a quantity 8, the rate of 
dissolution of the orbit in the presence of an electric field, so that the prob- 
ability of the nth state of energy is given by e*^1. This probability must 
be combined with that dependent on the spontaneous disappearance of the 
nth state, determined by e~2a\ where i¡2a = T is the mean lifetime of this 
state. The dissolution by the electric field is only perceptible if it takes 
place more rapidly than the normal disappearance, hence for 8 > > a. The 
number of atoms in this state, N, compared with the number in the case of 
absence of the field, N0, is given by N = A^0a/(a + 8). Hence the intensity of 
the spectral line is 

/=/0/(l+8/a). (7) 

The rate of dissolution 8 depends on two integrals I1 and 72, occurring in 
the Schrôdinger function : 

8 
Tie2 <r2/2 2Z2 

ha0 zl1 

2-o66 x io 16 

h 
(8) 

* “Zur Intensitälsschwächung von Spektrallinien,,, Z.f. Physik, 68, 204, 1931. 

49 
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The exact computation of these integrals is a very complicated matter, 
since in strong electric fields the original quantum numbers themselves are 

distorted into ueffective” quantum numbers, which must be found from 
series that are not convergent if the field strength is too large. It appears, 
however, that in such moderate fields as occur in ionized gases in celestial 
atmospheres these higher-order terms are rather insignificant, so that in the 
approximations used here these distortions of the quantum numbers may be 
neglected. Then we have to apply the following system of equations, 
given by Lanczos in his formulae 51, 52, 53, 54, 58, 61, 64 (pp. 224-226 
loc. cit.) : 

e = —¿-Fn* J T = 8(^2 + 2(^3 + 1 ))£ ^ sin2 <t>> 

k = ; k' = V i - k2, 

3e/2 = 2 cos ^(f). Ef -2 sin <j) sin ^rcf). K'y 

e/i/»2 = 2 cos ^>{K - E)y 

(9) 

where E and K are the complete elliptic integrals of the first and second 
kind, and E' and K' are the same for the modulus k'. The factor occurring 
in t was written 1 by Lanczos and restricted to the extreme components ; 
the more general form fl2+2'(/*3 + I) corresponds to what was called y^n in 
the former treatment. We have here to consider that the treatment by 
wave mechanics gives for nz the values o, 1, 2 (for n=z) instead of 1, 2, 3 ; 
this difference is compensated by the occurrence oí nz + i instead of nz in (9). 

Equation (7) shows that for 8 >> a, / << /0, hence the line has dis- 
appeared and is dissolved ; for 8 << a, the line is unchanged. From 
equation (8) we see that for small /2 (the variations of /2, because it is in the 
exponent, are the most important) 8 is large, of a much higher order than a 
(which for low levels is about 108), hence the line is absent. With increasing 
/2, 8 decreases, and when its decreasing value passes a, then the change from 
invisibility to normal intensity takes place rapidly : a rather small change in 
F suffices to bring it about. For the higher levels of hydrogen we may 
assume the value of 106 for a ; the uncertainty as to its exact value has, as 
will be seen, no material influence. Moreover, it is not necessary to represent 
the rapid continuous change ; we may replace it by a sudden disappearance 
at a certain value log 8 =log a (which we will take equal to 6), the more so as 
the results will have to undergo some smoothing process afterwards. From 
the relations (8) and (9) the value 8 = 106 determines a certain t, and so a 
certain value of w2 +J(w3 + 1) =y2n. So, for a given field F and for a certain 
n the division mark between the visible and the dissolved part of the Stark 
pattern may be computed. 

For this purpose corresponding values of ^=3e/2 and y=log€/1/w2 

have been computed for different values of r ; they are collected in Table I. 
There is a very smooth variation of 2=2^2 with T î f°r practical com- 

putations we may represent it by an interpolation formula 

t = i - o-óo# + o-oj#2. (10) 
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Table I 

Values of and elxjri 

#=3^2 y =log z=3€L y =log eljn* 

1-2*3 x IO_ 

i-i*4 x io_ 

0.99977 
0*99880 
0*99614 
0*99038 
0*9847 
0*9796 
0*9698 
0*940 
0*920 
0*900 

3*8 x 10-8 

2*3 x 10-5 

0*00041 
0*00216 
0*0066 
o*oi6o 
0*0255 
0*0342 
0*0501 
0*101 
0-135 
0*170 

+ 0*797 
•601 
•479 
•386 
•305 
•230 
•185 
•155 
•no 

+ o*oi8 
-0*028 

•066 

0*8830 
0*850 
o*8oo 
0*750 
0*700 
o*6oo 
0*5868 
0*500 
0*4132 
0*250 
0*1170 
0*0301 

0*197 
•254 
•340 
•426 
•515 
•696 
•721 
•882 

1*049 
1*380 
1*678 
1*902 

-0*095 
•147 
•216 
•279 
•339 
•455 
•472 
•574 
*686 
•951 

1-313 
-1*921 

Table II 

Values of A 

log a = 6 

3 •454e 10 ii 15 18 20 22 28 30 32 

0*200 
•IOO 
•050 
•040 
•O25 
•020 
•OIO 
•OO5 
*002 

0-250 
•200 
•IOO 
•050 
•O4O 
•O25 
•020 
•OIO 
•OO5 
•002 

7*02 
6-75 
6*29 
6*15 
5-87 
5*74 
5-35 
4*97 
4.49 

6*03 
5*6o 
4*89 
4-38 
4-23 
3-94 
3*8i 
3-41 
3-03 
2*54 

6*92 
6*65 
6*20 
6*05 
5-78 
5-65 
5*26 
4*88 
4-3.9 

5-91 
5*49 
4*79 
4*28 
4-13 
3-85 
3-71 
3-31 
2-93 
2*44 

6*83 
6*56 
6*n 
5*97 
5-69 
5-56 
5-17 
4*80 
4-31 

5*8i 
5-40 
4*70 
4*20 
4-05 
3*76 
3-63 
3-23 
2*85 
2*36 

6-56 
6*27 
5*82 
5-68 
5-41 
5*28 
4*89 
4-51 
4-03 

6*41 
6*io 
5-65 
5-51 
5*24 
5-II 
4-72 
4*35 
3-86 

log a =8 

5*45 
5-09 
4*41 
3-91 
3-77 
3-48 
3*35 
2-95 
2-57 
2*08 

5*25 
4.90 
4*24 
3*74 
3*60 
3*32 
3*i8 
2*78 
2*40 
1*92 

6*32 
6*oo 
5*55 
5*42 
5-15 
5*oi 
4*62 
4-25 
3*77 

5*14 
4*80 
4*14 
3-65 
3-Si 
3-23 
3'°8 
2*69 
2*31 
1*82 

6*23 
5-91 
5-47 
5*33 
5*06 
4-93 
4*54 
4*16 
3*68 

5-03 
4*70 
4-05 
3-56 
3-42 
3-13 
3*oo 
2*60 
2*22 
1.74 

6*oi 
5-69 
5-24 
5-II 
4*84 
4*71 
4*32 
3-94 
3-46 

4-77 
4.46 
3*83 
3-34 
3*20 
2*92 
2*78 
2-39 
2*01 
1-52 

5*94 
5-62 
5-i8 
5*04 
4*78 
4*64 
4*26 
3-88 
3*39 

4*70 
4*39 
3-76 
3*28 
3-14 
2*85 
2*72 
2-32 
i*94 
1*46 

5-88 
5-56 
5-12 
4.98 
4*72 
4-58 
4*20 
3*82 
3*33 

4-63 
4*33 
3-70 
3*32 
3-08 
2*80 
2*66 
2*26 
i*88 
1*40 
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For T =0, £ = 2 the real limiting gradient dzjdr is logarithmically infinite. 

For T = i, z = 0 the exact limiting gradient is - 4V2/377 = - 0-6002 ; for 
our practical computations this discrepancy is irrelevant. It was not 
found possible to represent y by an interpolation formula. We have now 
to solve equation (8) for the point of disappearance, S = a : 

or 
i6-oi - 2 x 0-4343/2 “ l°g = 6*0, 

lo-oi -y + log e - log n? = 
z 

3'454e* 
in) 

To find this equation, combined with the relation between y and ^ as 
given by Table I, was solved by graphical interpolation for different values 
of e and n. The results are given in Table II in the form of values of the 
quantity ^4 =^3-4546, as a function of n and 3-454e. The computation 
has been repeated for log a = 8, to see the effect of different assumptions 
about a. 

Now that ^ =3e/2 is known as a function of e, the interpolation formula 
(10) gives t ; from r and e the quantity y2n is found by r^ygie. So we 
have 

y2rc =7r(I -o-óo-s + o-oc#2). 
8e 

Inserting the values 

e = 1-169 x and ^ =3-4546^ =4-040 x lo^Fn^A, 

we find 

io6-9/io\4 A n xi n\2 * -r, 
y2 — ^ [ — -0-259—+ 0-0872 x 10-5 — A2F. 

F \nj n \io/ 
(12) 

The first term is identical with the result of the former approximate 
calculation by means of equation (5). 

The decrease of the number of visible higher members of a series with 
increasing electric field has been observed for some potassium series by 
Kuhn * and by Bakker.f Miss Dewey measured the extension of the 
continuous spectrum to the red side of the series limit for helium. J Chalonge 
discussed the dissolution of the lower Balmer lines Hy - HI into continuous 
emission in his researches on the continuous hydrogen spectrum.§ All 
these laboratory experiments with constant fields confirm the theoretical 
deductions qualitatively, though they do not allow an exact quantitative 
test of the formulas. 

3. In a partly ionized gas we have to deal with variable electric fields, 
depending on the continually changing distances of the charged particles 
from the hydrogen atoms. The probability of a field F is given by 
Holtsmark’s function l^(ß), where ß=FIF0, and where F0, a certain 

* Zs.f. Physik, 6l, 805, 1930. f Proc. Amsterdam, 36, 589, 1933. 
X Phys. Review, 35, 155, 1935. § Ann. de Phys., XI, 1, 123, 1934. 
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mean or normal field strength, depends on the physical parameters of the 
gas: F0=z-6iN2/2e (iV = number of charged particles per unit volume) 

= 46-8(2P/T)2/3 (P= electron pressure). The function W(ß) has been 
computed by Verwey.* For a certain F or ß the pattern of Stark components 
is extended over a breadth given by 

Av/v =ÍS,X¡\=2>EF{n{n - ’ 

or 

AÀ = ± 0-002561 {n(n - 1) + 2}F = =h SF. (13) 

For the lower members of the Balmer series, where the intensity of each 
Stark component is known, the resulting distribution of intensity over the 

broadened line could be exactly computed. For the higher members 
these intensities are not known. Hence we will assume that for each line 
the total intensity is evenly distributed over a band with a breadth zB =zßB0y 

where B0=SF0. To each value of ß (i.e. between ß and ß + dß) belongs 
the corresponding breadth 2jSP0, and its intensity at each point is given 
by W(ß)dß : zßB0. If there was no dissolution of the Stark components 
the total intensity for a certain AÀ would be found by integrating over all 
values of ß, from the lowest j81=AA/P0, for which the extremity of the 
band just reaches this AA, up to oo. 

7=t/(J81) = r®V; i+T(iS1)^1 = i. 
J ß! p J Co 

(h) 

Now a certain part of the red side of each band is dissolved and changed 
into continuous radiation ; this means that part of each band is cut off 
at a point given by the fraction y2 of the total breadth zßB0. We may 
represent these conditions by a diagram (fig. 2), where the abscissa represents 
AA, and ß is counted from o upward, and the breadth of the Stark band 
for every ß, proportional to ß, is included between the two inclined straight 
limiting lines r and v. Each horizontal line between these limiting lines 
represents the band for ß, its vertical co-ordinate, and must be provided 
with an intensity value W(ß)/ß. We get the total intensity U(ß1), as given 
by (14), for some AA by integrating along a vertical line, corresponding to 
this AA, the intensity values upward from the point, where the vertical 
intersects the limiting line, i.e. from ßv Without the dissolution of line 
radiation the integration would extend to 00 ; now, however, the red side 
part of the whole diagram is cut off by a clipping line, intersecting each 
horizontal band at a distance y2 

x zB ^ zy^ßBü from its left-hand end, 
where 

72 = 
107/io\4 

jSFoW 

A o J n 
-0-259—+ 0-0872.10y” ^2jSF0, 

or 
ZyiB =2b11~(1T\ - 0-259-ß + 0-0872 . IC,f 

l-T0 \ »/ n 

n 

10 
A2ß2F, 

f 
(iS) 

* Public. Amsterdam, 5> Table 3, p. 17. 
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For a given value of F0 (and ri) this function of ß can be computed ; the 
values of A are taken from Table II, representing -4 as a function of 
log € — log 1-17 x io~7/z3F. Then the clipping lines are drawn in the diagram 
(in fig. 2, standing for n=zo they are inserted for F0=z, 5 and 10), running 
as nearly straight lines from the red side below to the violet side upward, 
so that the part dissolved at the red side is at the same time situated at the 
upper side. For each AA the integration now extends from ßly not to 00 
but only to the intersection point ß2 with the clipping line. The fraction 
iß2 Çao 

: I denotes the part of the total brightness left at this point AA of the 
a-i J i /3l *'/31 

broadened line 
Table III 

Intensity Distribution in Balmer Lines 

F, 

200 
100 

>> 
70 
50 

>> 
35 
25 
20 
10 

10 
7 
5 

3'5 
2-5 

>> 
2 
1-4 
i 

2*5 
2 
» j 

1-4 
i 

0-5 
0-35 
0-25 

1 
(i 
2 
3 

(3 
3 
4 
4 

2 
(2 
2 
3 
4 

i 
(i 
3 
4 
5 
5 

i 
(i 

1 
2 
2 
3 
4 
5 

(i 
2 
3 
3 
5 
6 
7 
8 

2 
5 
6 
8 
9 

10 
12 
13 
14 

3 
6 
8 
8 

10 
11 
11 
12 
13 
14 

4 
5 
5 
7 
9 

10 
11 
13 
14 

8 
12 
14 
19 
20 
22 
23 
25 
26 

9 
13 
17 
18 
20 
22 
23 
23 
24 
26 

9 
12 
12 
IS 
18 
19 
23 
24 
26 

i 
29 
35 
41 
49 
51 
54 
57 
58 
60 

28 
38 
46 
47 
52 
55 
56 
56 
58 
59 

27 
33 
35 
40 
48 
49 
56 
58 
60 

40 
no 
120 
135 
150 
153 
158 
162 
164 
166 

100 
124 
141 
144 
153 
159 
160 
162 
164 
165 

93 
108 
114 
129 
145 
147 
160 
163 
165 

n — 10 

139 
286 
304 
344 
376 
380 
391 
397 
399 
402 

n—zo 

239 
307 
352 
358 
379 
392 
393 
396 
399 
401 

n=so 

214 
256 
270 
317 
358 
362 
393 
398 
401 

118 
326 
352) 
450 
522 
533 
555 
565 
568 
572 

212 
341 
455 
465 
527 
556 
558 
563 
568 
571 

162 
228 
247) 
356 
466 
477 
558 
567 
571 

149 
302 
322) 
373 
393 
397 
402 

113 
152 
160 
166 

37 
51 
59 

13 
25 13 

127 
144) 
301 
371 
376 
388 
399 
400 

100 
109) 
141 
164 
164 

12 
51 
57 

12 
22 

136 
150) 
374 
394 
401 

109 
154 
164 

38 
57 22 10 
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The integrations have been performed, for a number of different values 
of F0 for each of the quantum numbers n of Table II, for every tenth part 
of zBq. An extract of the results for the intensity, for entire multiples of 
B0, is given in Table III for n = 10, 20, 30. (The lines in parentheses hold for 
log a = 8.) Each line represents an intensity curve for that n and F0. The 
scale of the abscissae must be transformed into a scale of wave-lengths by 
means of B0 = SF0 AU. As an example, the intensity curves for n=zo 
are represented in fig. 3. The dashed line for ^0=5 holds for log a=8 ; 
it shows that errors in the assumed value of a have only a small effect. A 
dotted line for jF0 = 5 and for 2*5 indicates how the original curve without 
dissolution of line radiation would have run. By this asymmetrical dis- 
solution the maximum and the barycentre of each line are displaced towards 
the violet side. 

The intensity curves for different F0 are cut off at the red side all at nearly 
the same distance in ATJ. This limit is determined in fig. 2 by the inter- 
section point of the clipping line with the right-hand side limiting line. If 
we assume the former to be exactly straight, corresponding to the first two 
terms of (15) with constant A, then the intersection point is given by 
(io7/jF0)(io/w)4 : 2(1 +0-259^1/7*) in units of jB0 ; if the scale is transformed 
into AU by substituting S0 = &F0, we see that jF0 disappears from the 
result. We find, by means of these expressions, for the red side limit 
of the curves : 

îor n= 9 10 ii 15 18 20 22 28 30 32 
28-9 23-6 19-7 IO-9 7-7 6*3 5*2 3-27 2-86 2*52 AU, 

roughly varying with 1/n2. 
By integrating the intensity in the tables and curves we find what fraction 

of the total intensity of the line remains as line radiation, while the other 
part is dissolved into continuous radiation. The directly computed results 
are compiled in Table IV. 

Table IV 

Theoretical Intensities of Balmer Lines in Percentages of Normal Intensities 

Fq = 200 100 70 50 35 25 20 10 3*5 2-5 

9 
10 
11 
15 

26 
15 

8 

59 75 
40* 57 
26 40 

86 93 
74* 86 
56 73 
14 23 

96 98 
92 95 
85 90 
35 45 

99 
99 
97 
76 87 

100 
100 
98 
93 97 98 99 

■Fn =IO 3-5 2-5 1-4 0-7 0-5 0*35 0-25 

18 
20 
22 
28 
SO 
32 

45 
29 
19 

61 
43 
29 

76 87 
58t 74 
42 57 

93 96 
85 t 90 
72 81 
33 41 
25 
18 

97 
95 
89 
57 

99 
97 
94 
72 

99 
99 
97 
84 

32Î 45 
24 36 

60Î 75 
49 64 

lOO 
lOO 
98 
92 
86 
78 

96 98 
93 96 
88 94 

* 44 and 76. T 60 and 86. X 34 and 62 for log a =8. 
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This percentage of residual intensity can be represented rather exactly 
as a function of log ^0 + 3*8 log (n/zo) ; for values of this logarithm written 
in the next line the percentage takes the value of the second line : 

fnY8 

log F0[ — ) -0-5 -0-2 o o-i 0-2 0-3 0-4 0-5 o-6 0-7 o-8 0-9 i-o 1-2 1-5 
\20/ 

percentage 100 99 97 96 94 91 85 78 68 58 48 37 27 13 6 

By means of this little table we can find for every condition of the gas, 
indicated by F0, how the residual intensities of the Balmer lines decrease 
with their increasing quantum number, till they disappear. 

4. There is, however, another circumstance to be considered here, the 
merging of the consecutive members of the Balmer series. If the electric 
field increases in strength and the Stark pattern broadens, the patterns of 
adjacent lines at last will eventually overlap. The breadth of the Stark 
pattern is given by hùsv =2>eaoF{n(n-i) + z}\ the distance of two adjacent 
lines for large n is given by AAv =e2la0n

s. They are equal for 

3aQ
2eF{n\n - 1) + znz} = 1 or F = {1 ¡^E^n^n - 1) + 2?z3}_1 ; 

for n = 10, 20, 30 this formula gives F = 62, 1-9, 0*24. In this case of over- 
lapping it is not permissible in physical theory to treat the Stark effect of 
each line separately ; the collectivity of lines must be treated together. 
In our case the result of this treatment must be smoothed afterwards into 
a continuous intensity curve produced by continually changing fields. We 
may assume that the result will be the same, if first we treat each line 
separately, compute the smoothed result of changing fields, and then combine 
the results for the different lines. 

It is readily seen that lines appreciably dissolved, completely merge 
into a continuous spectrum of nearly constant intensity ; it is only for 
much weaker fields where the dissolution is small that the lines begin to 
be separately visible. The relation between these two causes of dis- 
appearance of the lines depends on the• principal quantum number; the 
merging of adjacent lines depends on Fn5, the dissolution on Fn*, hence 
for the lower members the dissolving process will be more important than 
for the higher members of the series. 

A combined intensity curve of all the lines was computed and con- 
structed for F0 =20 in the vicinity of n =20, for Fq=z and 1-4 in the vicinity 
of ft =20, and for F0=o-z in the vicinity of ft =30. For the values of n 
contained in Table II the intensity curves were taken from direct com- 
putation ; for the other values they were found by interpolation, using 
F0ft4 as the argument. The normal total intensity for each was assumed 
to be ~ i/ft, because in conditions of equilibrium the population of the 
higher levels increases with ft2, and the transition probabilities approach 
ft-3. The result is shown in figs. 4-6. The separate curves of the spectral 
lines are given by dots (in fig. 5 they are only given for F0 =2), the combined 
curve is given in full (for jF0 = 1*4 in fig. 5 by a dashed line). We see that 
with decreasing wave-length the undulations rapidly decrease and disappear, 
and a continuous radiation remains. Connecting the constant part with 
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ON A GENERALIZATION OF LINDBLAD’S THEORY OF 

STAR-STREAMING. 

S. Chandrasekhar. 

I. Introduction.—-The dynamics of a stellar system can be studied by 
one of two methods. The first method consists in specifying in some 
detail the character of the orbits described by the individual stars and then 
seeking for a distribution function / of the space and the momenta co- 
ordinates which are consistent with the derived motions and the equation 
of continuity. In the second method, on the other hand, no attempt is ^ 
made to describe the trajectories of the individual stars, and the equations ^ 
of motion are discussed only to obtain the first integrals consistent with \ 
the general large scale symmetry character {e.g. spherical, cylindrical, etc.) 
of the system ; the distribution function then follows from an appeal to 
Jeans’s theorem. As an example of an application of these two methods 
we may refer to the manner in which the dynamics of the globular clusters 
has been studied. In Eddington’s * investigation the first method was 
adopted. However, as Shiveshwarkar f has shown, results identical with 
Eddington’s can be obtained by the second method. In this particular 
instance Shiveshwarkar’s solution of the dynamics of the globular clusters 
is mathematically the more elegant. But Eddington’s treatment gives 
greater insight into the actual state of motions in the globular cluster—in 
particular, it makes the dependence of the ratio of the axes of the velocity 
ellipsoid on the distance J easily understood. When we come to treat 
the dynamics of the galaxy the situation is not so simple. As a model of 
the galaxy we may consider a stellar system with cylindrical symmetry. 
But an application of Jeans’s theorem shows that for such a system radial 
star-streaming is not possible. This is in direct disagreement with the 
results of observation. At the same time, as Oort § and also Shiveshwarkar |j 
have shown, the dynamical properties of stellar systems with cylindrical 
symmetry have certain striking resemblances with the state of motions in 
the galaxy. In particular, it can be shown^ that 

=\¡ i+~ V 

where ©0 and co0 are the linear rotational and angular velocities respec- 
tively, and H the mean speed in the radial m direction and A the Oort 

* A. S. Eddington, M.N., 74, 5, 1913 ; 75, 366, 1914. 
f S. W. Shiveshwarkar, M.N., 96, Z49>_i936. 
J The relation in question is : .R : 0 : O =(1 +kr2)% : 1 : 1. 
§ J. H. Oort, B.A.N.y 4, 269, 1928. 
Il S. W. Shiveshwarkar, loc. cit. Shiveshwarkar, loc. cit., p. 757. 
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used, as given loe. cit., Table I, pp. 90-91. Their log E was compared with 
what they should be after simple theory. Since the stimulated transitions 
up and down between the highest levels, the ionized state included, are 
more important than the spontaneous transitions (cf. Af.iV., 96, 788), the 
partition between these levels will probably be nearer to the thermodynamical 
equilibrium than to the case of a pure capture spectrum. Hence in this first 
approximation a normal decrease ~ w-1 was assumed. In this way the line 
number was derived where the residual intensity was 50 per cent. For 
the three columns of data we found 72=30 for film 49a, 72=26 for 48a, 
72 =28 for 49¿. From the values of Table V this corresponds to F0 =o-io, 
0-20, 0-14. Assuming jF0 =0-15, we find from the expression F0 =z-6iN,¿,ze 
that log Af = 12-10. This is the total number of charged particles, ions 
and electrons together per c.c. Taking their numbers equal, we have 
log iVe =log = n-8o. Assuming a temperature of 5000o, we find the 
combined pressure 2P=o«9 dynes/cm.2. 

From the intensity of the Balmer continuum, making use of the theoretical 
value of the absorption coefficient, Menzel and Cillié found log NiNe =23-18 
(Harv. Circ. No. 410, p. 23), hence, in the case of a pure hydrogen chromosphere 
log =log Afg = 11-59 (for T = 10,000o; for 6ooo°, log Af = 11-42). The 
results are accordant as to the order of magnitude. An exact correspondence 
cannot be expected, first because Menzel and Cillié’s result holds for the base 
of the chromosphere, where.as our value represents average conditions. 
Moreover, in the emission of the Balmer continuum only the interaction of 
hydrogen ions with the electrons plays a rôle, whereas the Stark broadening 
depends on all the charged particles, which are probably produced in large 
measure by the ionization of metal atoms. 

The problem of deriving the behaviour of the Balmer series as absorption 
lines in ordinary stellar spectra, by combining our results for the different 
layers of an atmosphere, is left for further researches. 

Summary.—The theoretical work of Robertson and Dewey, and of 

Lanczos on the dissolution of the highest levels of an atom by electric fields 
is applied to the disappearance of the higher members of the Balmer series. 
Their intensity curves in the emission spectrum of a partly ionized gas are 
computed. The merging of the highest Balmer lines into continuous 
radiation allows the derivation of the electron density in an atmosphere by 
means of the number of visible lines. This is applied to the solar 
chromosphere. 

Sterrekundig Instituât, 
Universiteit van Amsterdam. 
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