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1. In discussions of photometric measures of
eclipsing variables the aim of the computers is usually
to derive a set of elements and to show that the
measures can be satisfactorily represented by these
elements. Because the amount of limb darkening of
the stellar discs was unknown, H. N. RusseLr and
Harrow SHAPLEY in their fundamental discussion
of the problem constructed tables for two extreme
suppositions, viz. uniform discs and complete dark-
ening at the limb. A comparison of the “uniform” (U)
and the ‘“‘darkened’ (D) solutions could indicate the
influence of our uncertainty about the value of this
datum.

The recent development of our astrophysical know-
ledge about stellar atmospheres has shown the con-
nection between the amount of limb darkening for
different colors and the coefficients of continuous
absorption. It is now possible to compute by theory
the limb darkening for different wave lengths in stars
of different spectral type. So limb darkening to day is
an important astrophysical datum by which our theo-
ries about the stellar atmospheres may be tested.
Besides our own sun we have only the eclipsing vari-
ables as possible sources of information about this
datum; this indicates the importance of attempts to
determine the amount of limb darkening from photo-
metric measures of eclipsing variables. If this amount
is denoted by x, it means that the surface intensity
I = I,(1 — x + x cos y), where sin y is the distance

to the centre of the disc; for x = 1 the limb is com-

pletely darkened.

Some results about limb darkening have been

obtained in the last years. Especially the introduction
of the photoelectric cell in stellar photometry has
improved the accuracy of intensity measures to such
a degree that it does not seem impossible to derive at
least for some stars reliable values for the coefficient x.
It is then, however, not sufficient to find a value of x
that satisfies the observations; we wish at the same

time to be sure about the degree of certainty with
which it is given by the observations, i.e. to derive
the mean error of x. This was the chief object of the
present investigation.

2. We assume different values of x, the coeflicient
of limb darkening, and for each of them we derive
the best set of elements and compare it with the
observations. The regular way in solving the problem
of deriving the best elements and their mean errors
would have been the same as is followed in least
squares corrections of a planetary orbit: to compute

| differential quotients giving the dependence of each

observation on small variations of the different ele-
ments. We applied the principle of a least squares
solution in another way. If we take three (e.g. equi-
distant) values of an unknown, derive for each case
the differences Obs.-Comp. and compute the sum
total of their squares 2¢2, then —if the most probable
value of the unknown is situated within the chosen
limits — the three values of 2¢? can be represented
by a parabola. The most probable value of the un-
known is then the abscissa belonging to the top of the
parabola, the minimum of 22

The same parabola allows to find the mean error.
In the simplest case of one unknown x, for which
there are n observations of equal weight with a mean
value %), we have 3¢? = Z(x — x,) 2. For a different
value %, + A the sum total of the error squares
26’2 = Ze? + nA2 If for A we take p., the mean
error of x, 2’2 = 32 + nu2  Since pm? =
3e2[n(n— 1) we have 2¢'2 = (n/n— 1)2e% Hence in
the parabola representing the sum of error squares
as a function of x we have not only to look for x,,
the abscissa of the minimum, but also for the abscissas
for which the ordinate is n/(n — 1) times this mini-
mum; they are situated at distance p. to both sides
of x,. v

In the case of more unknowns an analogous result
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can be derived. If the unknowns are denoted by x,
y, 2, we have equations of the form ax + by + cz= I+,
where [ isthe observed quantity. The normal equations
have the form [aa]x + [ably + [ac]z = [al], etc.,
and after elimination of y and z, following the Gaus-
sian algorithmus, we have [aa2]x = [al2], where
[aa2]is the weight of .. If now instead of the most
probable x, another value x, + A is introduced, the
change of 2¢? is not simply [aa]A2, because by a
change of x the other unknowns y and z too are
changed. It is easy to take these changes duly into
account and to show that the real change in Ze?
amounts to [¢a2]A2. Hence for a change of y. in x,
we have

32 = Ze? + [aa2]p?® = 2 {1 + 1/(n— m)] =

= n—m+1 Se2,

n—m
where n is the number of equations and m is the
number of unknowns.

3. We suppose a circular orbit and circular discs
for the stars. If 7 is the radius of the large star, kr
the radius of the small star (unit is the radius of the
orbit), ¢ the inclination of the orbit, then 4, the appa-
rent distance of the centres may be expressed as a
function of & = 2n(t —t,) /P:

d\? cos?/ , sin?i .
(—) = + 2 sin2 3,

r r2

Then «, the fraction of the light of the small star
that is occulted by the large star, may be computed
as a function of £ and d/r. For the case of uniform
discs (x = o) RusseLL determined it as a function
of k and p, where d/r = 1 + kp, and then, for the
purpose of finding the elements from observations,
reversed the function and gave p = f(k, «) in his
Table I'). An extensive and accurate table for
a = f(k, d/r) has been computed and published by
Dr. MaNFRED WEND 2). The same table may be used
if the small star occults part of the large star, because
for the same values of £ and d/r the same area is
covered, which is the fraction «£? of the large star.

For the case of complete darkening of the limb
(x =1, I =1, cos y), SHAPLEY has computed ana-
logous tables, for which p = f(k, «) is given in
Tables Ix and Iy of RusseLL’s later paper.

In the case of limb darkening x the intensity
I(1 — x + x cos y) can be expressed for each point of
the disc as a linear function of the “uniform” and the
“darkened” intensities:

I(x) = (1 — %) I(0) + 2 I(1).

1) Astrophys. ¥., 35, p. 33
MANFRED WEND, FEine Tafel zur Theorie der Bedeckungs-
veranderlichen; Diss. Leipzig 1931.
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This holds also for the occulted part of the disc,
provided it is expressed in all these cases in the same
unit /,. The values of « in the tables, however, are
expressed in the total uneclipsed ‘brightness; for the
U-case this unit is ©r2[,, for the D-case it is 2/; 72,
for the general case it is 7r2[y(1 — 1/; x). Hence

(1—x)ay + %fzxap
() = IOy,
In this way from RuUsseLL’s tables other tables may

be derived giving « as a function of £ and d/r for
different values of x.

4. The eclipsing variable YZ = 21 Cas was chosen
as a first instance to apply this method of working.
An extensive series of measures with the photoelectric
cell has been made by C. M. Hurrer at Madison?).
The star is an A 3 star with a period of 4%'4672,
which is almost exactly cut in two equal intervals by
the two eclipses. From the normal magnitude 356
the star decreases o°41® in the primary, o'o7™ in the
secondary minimum. The duration of the eclipses
is 031 days; the secondary minimum has a constant
phase of o'1o days, indicating a total eclipse of the
small star. The primary minimum, due to an annular
eclipse of the large star, shows a continuous variation,
indicating a considerable amount of limb darkening.
For our computations the tables of ‘reflected nor-
mals”3) (each based on 4 observations) were used.
They give the magnitude difference between 21 and
23 Cas; subtracting the mean difference outside the
eclipses 0°343®, we find for each normal the magni-
tude difference with the unobscured light, from
which the decrease in brightness Al as a fraction
of the total light could be computed. The results for
the primary minimum are found in Table 2, column 2,
and they are plotted in Fig. p. 147. The normalsduring
the constant phase of the secondary minimum give
a mean decrease of 0°0636 of the total light; hence
the large star emits 0°9364 of the combined light.
The maximum decrease in the midst of the primary
minimum is 03085 of the total light; so the part of
the light of the large star which is occulted at
maximum phase «, = 0°3085 : 0°9364 = 0" 3295.

In the case of a central eclipse for the maximum
phase this value, for a given x, determines the ratio
of the radii k. Putting k£ = sin 8 we find by an easy
integration «, = sin?g for ¥ = o, «y = 1— cos®f3 for
x = 1, hence

3—3x (1
3—x
1) The statement in RUSSELL’s paper Aph F. 36, p. 70 and

240, on the derivation of « (x) is not right.
2} Publications of the Washburn Observatory, Vol. 15, part 2.

3) lc p.115.

— cos?f) +3

0'3295 = L (1—cos®B),
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an equation of the 3¢ degree in cos 8, which can be
solved for every x and then affords the corresponding
k. In the general case of an annular eclipse, if the
minimum distance of the centres at the maximum
phase d,/r is given, x again determines the ratio £.
So besides x as the first variable, the minimum dis-
tance dy/r and the ratio £ together constitute one
second independent variable. It is easier, then, to
choose k£ and to compute d,/r in the following way.
From

3— 3% 2%
3—x U + 3—x
where 2qu = k? = sin?f3 we find «,p; furthermore its
central value a4p(ce) = 1— cos3f3, hence a4p : agp(ce)
is known, and RusseLr’s Table Iy for the darkened
solutions gives the corresponding d,/r.

For the computation of the other phases we want
the inclination ¢ which is directly connected with d,/r,
because here & = o. For the beginning and the end
of the eclipse (anomaly = ;) we have outer contact
of the discs, hence d/r = 1 ++ &, and

0°3295 =

cos?; = sin%
. .
(1 + k)= —T + —rz—-smz.‘}b
dy\? cos
(—"> = ———, hence
r 7

gr 1 (1+ k)2 ><d_/r)2_ ..
gt = s, < CADE I); ) = 14 tg%sin33.
When for given values of ¢ and 3 d/r has been found,

then by using £ and x the value of « and the obscured
fraction of the total light is determined.
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It is, however, necessary to consider sin 9 also as
an unknown, since the moment of the beginning
and the end of the eclipse can be read directly only
with great uncertainty. If we add it as a third inde-
pendent variable it will be determined from the
entire light-curve. So three independent elements can
be varied to adapt the theoretical light-curve to the
observations: x, £ (including d,/r) and sin ;- there-
with considering «, = 0°3295 for the maximum phase
in the primary minimum as an invariable given
datum.

5. After for each of the values x = 040, 0°50,
060, 070 solutions had been found that represented
the observed curve well, the computations were made
for adjacent different values of the other unknowns.
For each x three values of £ were chosen, and for
each of these cases three values of sin 3; were assumed.
For all these cases the diminution of brightness, in
fraction of the total light, was computed for sin & =
0°035, ‘056, "070, ‘105, ‘140, "175, corresponding to
t—t, = 0°025, "04, "05, ‘075, ‘10, ‘125 days. This was
sufficient to trace the curve exactly; its outer parts
were fixed by the beginning sin 3, and the value for
sin J = o'175, taking into account that there the
intensity decreases as (sin ¥ —sin 3)¥%. Then for
all the normal points the deviation O—C was derived
(in units o'oo1 of the full light, which nearly corres-
ponds to o'oor) and 2e? was computed.

In Table 1 the results are collected. Each line gives
S¢2 for the three assumed values of sin 3, as well as
the number of permanencies and variations of sign.

TABLE 1.
Primary Minimum. Results for different hypotheses.
x k sin 9 Se2 Perm.-Var. sin 95 52

0’40 05428 | 0221 ‘213 °209 5206 1813 1404 34—7 26—I1 24—13 | 0'2090 1404
0'550 o220 ‘216 ‘212 1309 935 1544 19—20 23—I5 23—I5 | 02165 928

0°555 0’224 ‘220 °216 3238 2523 3020 30—I11 26—13 26—9 02196 2474 -
0°'50 0534 0’217 ‘214 ‘210 2223 1377 1324 27—11 26—11 28—9 02118 1196
0’540 0'220 ‘215 ‘210 1673 892 2453 22—I9 21—I§ 27—II 0'2I4I 861
0°545 0’224 ‘220 ‘217 1021 1614 1985 23—I5 23—I5 33—5 0°2205 1603
o'6o 0’525 o221 ‘216 ‘214 2038 985 1143 27—I1 21—IQ9 24—I3 0'2163 981
0'530 0'224 ‘220 ‘217 1902 937 869 24—15 18—19 18—19 | 02181 828
0535 0224 ‘220 ‘217 1309 1154 2335 19—17 23—I5 29—9 02217 978
o070 0°5I53 | 0224 ‘219 ‘214 2556 865 1424 31—7  20—17 24—II 02178 794
0'520 0224 ‘222 °220 1444 1112 1068 24—14 15—I19 25—I2 0'2207 | 1051
0525 0224 ‘220 ‘217 1404 1429 2258 22—15 27—I1 30—7 02225 1262
o'40 0’5471 | 0216 ‘213 °210 1000 884 1504 19—17 20—13 26—9 0'2140 828
o'50 0’5385 | 0°220 -215 -2I0 1539 834 1764 26—r11 23—I13 26—I11 0'2153 830
o'6o 05298 | 0'222 ‘219 ‘216 1556 814 837 25—I13 16—19 21—1I3 0°2177 730
o70 0'5153 02178 794
( o‘7o) 0'5174 | 0'220 ‘2175 ‘215 974 831 1042 24—15 19—17 19—17 | 02178 829

‘3105 .
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Representing the three values of 2¢? by a formula
a + bA + cA? we find the most probable value of
sin 9; and the corresponding minimum of error
squares in the last columns. They show the smallest
¢ attainable for each of the three values of £;
treating them in the same way, we find the most
probable £ belonging to each x. For x = o'70 the
case is different; because the first value £ = o'5153
corresponds to d/r = o, central eclipse, it is the
lowest value that is possible; since a smaller value
is not possible for 2:2 this £ has to be assumed.
For each of the other three cases of correspond-
ing x and £ values the computation was repeated
(in the lower part of Table 1) for different sin 3, to

TABLE 2.

AMSTERDAM

Primary Minimum. Residuals O—C.

o040 o°50 0’6o 070 070
Phase AT o'5471| ‘5385 ! °5298 | 0’5153 | 0'5174
02140 | ‘2153 | 2177 | ‘2178 | ‘2175

01628 |+o0005 | + 5+ 5|+ 5|+ 5|+ 5
1575 |— ©03 | — 3 — 3| — 3| — 3| —3
1546 ooo o o o o o
1508 o4 | — 3| — 3| — 2| —2|—1
1481 oo8 | — 5| — 5| —3|—3|— 2
1436 oty | — 8| —9| — 7|1 — 7| —6
1390 o019 | — 4| — 5| — 2} — 3| — 3
1345 org |+ 3!+ 2|+ 5|+ 4|+ 3
1290 ogo | + 2|+ 2|+ 4|+ 3|+ 3
1252 039 o|+ 1| + 3 o + 2
1204 048 | + 2| + 4|+ 4|+ 4+ 3
1154 62 | + 2|+ 2| 4+ 1|+ 3 o
1112 o72 | + 4|+ 4 + 3|+ 4|+ 3
1081 95 | — 9| — 9| —10| —10 | —1IO
1050 o8 | — 3| — 4| — 4| — 4| — 35
1018 103 o o o o o
0978 19 | — 5| — 5| — 5| — 5| —35
0944 131 3, — 4| — 4| — 3 3
0909 139 o|l— 1| — 1| — 1 o
o880 148 o| — 1 ol — 1| 4+ 1
0834 167 | — 4| — 5| — 5| —3|— 2
0792 167 | +10] 4+ 9| + 9| + 10| 411
0762 82 |+ 4|+ 4|+ 4+ 5]+ 7
o712 20 | — 6| — 6| — 6| — 5| — 3
0684 213 |+ 1|+ 2| + 1| 4+ 1| 4+ 4
0637 22 |+ 1|+ 2| + 2| 4+ 2| + 5
0609 242 | — 3| — 1| — 2| — I o
0570 249 |+ 3|+ 2|+ 3|+ 3|+ s
0548 268 | — 9| —10| —10 | — 9| — 7
0509 259 | + 11| +10}| + 9| + 9 | + II
0472 274 | + 4|+ 3|+ 2| 4+ | + 3
0459 279 | + 2| + 1 o| — 1 + 1
0424 287 | + 1 o — 3| — 4| — 2
0397 287 | + 5| + 3 o| — 1| + 1
0370 289 | + 7| + 5| + 1 o + 2
0329 299 o, —=2 | —5| — 5| —3
0308 299 | + 1 ol — 3| — 4| — 2
0254 308 | — 5| — 6| —7| —8| —35
0200 304 | + 1 o| — 1| — 1| + 1
o148 310 | — 3| — 4| — 5| — 5| — 3
0097 302 |+ 5|+ 5|+ 4|+ 4|+ 6
0044 —9314 | — 6| —6| —6| — 7| — 5
T2 891 QoI 866 874 831
Perm. 18 23 19 25 19
Var. 15 13 15 13 17

B. A.N. 297.

find the most probable value directly as well as the
residual 2e2. The object of this repetition was chiefly
to see what differences in 2¢% may be expected simply
from the unavoidable small errorsin the computations;
it appears that they may amount to nearly 100.
Whereas the parabolic determination of £ in the first
three cases had given for 2¢? (min.) 667, 820, 828,
the new derivation of sin S, yielded 828, 830, 730.
A new computation with the definitive elements,
after correcting some small systematic mistakes in
the first computations, left the residuals O—C for
the normals as given in Table 2; the sum total of
these error squares is 891, go1, 866, 874. The extreme
curves, for o'40 and o'70, are drawn in Fig. p. 147.
Applying the method of § 2 upon these results we
find the mean error of £ and of sin 5, for each of
the values of x being given:

x¥=040; k=0"5471 4~ 0°0008;sin ;= 02140 -+ 0'0015

0'50 0'5385 0010 0°2153 0008
060 05298 oo18 02177 0003
0°70 05153 — 02178 0007

6. The values of Z¢2 found for the four cases,
being nearly equal, show that x, the amount of limb
darkening, cannot be determined from these data.
It appears to be possible for each of these x to adjust
the other elements in such a way, that they represent
the observations nearly equally well. The residuals
O—C in Table 2, as well as Fig. 1, show that the
computed curves nearly coincide during the main
part of their course; still clearer it may be seen from
the computed values of Table 3.

TABLE 3.
Primary Minimum. Computed Decrease.

x= o040 | 0’50 o'6o 070 oo II

k= o0'5471| 0’5385 | 0’5298 | 0'5153 | 0’5174

sin 9p = 0°2140| 02153 | 02177 | 02178 | 02175

0’125 0°0404 0°0408 | 0°0420 | 0°0404 | 0'0405
100 1093 1089 1093 1086 1085
075 1916 1915 | 1917 | 1934 | 1939
050 2704 2704 2703 2708 2732
040 2922 2903 2872 2855 2876
025 3025 3016 3008 2998 3021
000 3085 3085 3085 3085 3105

The curves are divergent only at the phases near
outer and inner contact, where the border parts of
the disc come into play. At outer contact the differ-
ences are partly neutralized by changes in sin 3,
the time of contact. Near inner contact, at t — ¢, =
0'03 — 0'04%, the curves show notable differences of
figure; the differences in brightness amount to o'006
or 0'007, corresponding to 0009 — 0010 magnitude.
After the representation in Fig. 1 o040 and o0
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seem to be the extreme admissable values for x.
The latter even shows such a persistence of negative
O—C values, that it must be judged to be an im-
probable solution. Here, however, we have to con-
sider that the basis of all these curves is the fixed value
of 0'3085 as the assumed decrease in the minimum.
If we take the minimum brightness o-ooz lower,
then with x = o070 the representation of the lowest
part of the curve can be made quite satisfactory.
For this case, with a decrease 03105 in the minimum,
we find the occulted part of the light of the larger
star ¢y = 0°3314, and the ratio £ for a central eclipse
0'5174. The computation with these elements and
three values of sin $; and the resulting 2e? is given
in the last line of Table 1; the residuals O—C for
sin 9 = 02175 are given in the last column of
Table 2. Now the representation with x = o0
(called o070 II) is quite as satisfactory as in any
other case. By an analogous but smaller change of
minimum brightness 2¢? in the case of x = o'60
could be somewhat depressed also.

The extreme difficulty of determining the amount
of limb darkening for eclipsing variables becomes
manifest in these results. Even the high accuracy
of the photoelectric cell is hardly sufficient; a decision
between the different shapes of the light-curves near
inner contact will only be possible if the number
of observations in just these most sensitive parts of
the curve is considerably increased. It is doubtful,
therefore, whether with less accurate measures (visual
estimates or photographic measures) real information
about the limb darkening may be obtained. The
matter is somewhat different, if photometric measures
in two colors are made and compared?'); for both
series the geometric unknowns £ and sin 3, must be
the same and cannot be adjusted separately, so that
the relative limb darkening for these two colors may
come out more easily.

7. The secondary minimum, theoretically, can
give information about the limb darkening of the
small star, through the figure of the slope of the light-
curve between the constant parts. As it is improbable,
regarding the small range in brightness, that a definite
result about its amount of limb darkening may be
reached, we have restricted ourselves to only making
U- and D- solutions in this case. Since the secondary
minimum affords independent data about the geo-
metrical elements it can be used for a test of the
values of £ and sin 3, derived from the primary
minimum.

In the case of a circular orbit £ (with corresponding
do/r and ¢) and sin &, must be the same for both

Cf. H. ROSENBERG, Astrophys. 7., 83, p. 67 (1936).
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minima, and x is the only adjustable quantity. The
equality of the intervals between the minima does
not prove, however, that the orbit is circular, but
only that the excentricity has no tangential component.
There may be a radial component showing itself in
the different durations of the eclipses. We can take
it into account by considering sin %3, (Y = mean
anomaly) as an independent unknown for the secon-
dary minimum, and determine it by adapting the
light-curve to the observations. We have then to
change d,/r at the same time. If ¢ denotes the excen-
tricity in radial direction and ifitssquareisneglected,
the radius vector in primary and secondary minimum
is multiplied by 1—¢ and 1 + ¢, and sin Zin these
minima is multiplied by 1 4 2¢ and 1 — 2¢. Hence
in stead of the relations of § 4 we have
, COs?i i

g
(1 k)2 = (1 =) T + (14 )2 7 sin Sy

r

<@_~.,,)2 —(1—) cos?z

(primary min.)

(primary min.)

7 r?
iy o
(1 4+ k)%= (14 ¢)? Cji ! + (1—¢)? 51;121 sin? 3y,
(secondary min.), or
2 2
G = (2 s
027 -

2
= (I + e> + tgzl Sinz 952.

1—e
2
From these two equations C—_Fz) =1+ 4¢
and tg% may be computed for each £, and then for
every other time during the secondary eclipse we have

d \?> (14 e\? S e e
<d0-,ﬁr> _<I—e> tgh st 7

e L -
<_> = (1402 5 4 (1— )2 i sinw,

r

The resulting values of ¢ and r will of course be
different from the results derived from the primary
minimum in the supposition of a circular orbit. The
elements for which the lightcurve has been computed,
and the resulting 2¢? for the secondary minimum
are given in Table 4; the observational data, the
“reflected normals”, reduced to decrease in fraction of
the total light, are given in the first column of Table 5.
For each £, corresponding to some x in the primary
minimum, the best value of sin;, was deduced by
means of minimum 2e2, for the uniform as well as for
the darkened case. The results for the extreme cases
are plotted in the lower part of Fig. p. 147. It appears
from 2e? as well as from the residuals O—C in Table 5
that the representation of the data by the 10 sets of
elements is not much different; the sets with x = o°70
are somewhat less good than those with o'60 or o350,
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A TABLE 4.
Secondary Minimum. Results for different hypotheses.

Z‘" sineBb Zezg sin 9 g sin 95 (pr) e 362
040 0240 "230 '216} 530 495 685 0232 4- ‘008 0214 0'042 490
0°5471 0’06 0’04 0‘005 578 501 ‘705 0’231 ‘006 2 0'037 500
0’50 0240 ‘230 '220) 532 485 548 0°231 + ‘008 02153 | 0038 485

0230 ‘220 "2I0 529 558 819 0°226 4 ‘008 2 0'027 513
0’5385 o'06 ©0'035 o0°'0I5 5
o'60o 0228 222 216 493 500 587 0°225 + "005 o'2177 | o018 486
0'5298 | ©'024 o010 ©0°009 566 553 616 0223 + "003 5 o'or7y 525
o070 0’224 ‘219 ‘214 } 523 518 580 0'221 4 ‘003 02178 | o0°007 512
0’5153 | 0014 07003 0°004 666 605 638 0218 £ ‘oo4 5 0°000 604
o'70 0220 02175 0215 | 537 532 565 0218 4 ‘003 02178 | o000 529
0’5174 | 0005 ©0'000 ©0°006 | 618 604 614 0°217 -+ ‘004 2 0'000 604
TABLE 3.
Secondary Minimum. Residuals O—C.
0’40 o'50 o'6o ool o770 IT
Phase sl U D | U D | U D| U D | U D
0°1495 — 0005 o —2|—1 —3|—2 —3|—2 —3|—4 — 4
1332 oo4 |+8 + 6| +8 + 4|+6 + 4|+5 + 3|+ 4 + 2
1222 028 —1 —12|—10 —14|—12 —14|—12 —15 | —13 —1I§
1130 024 o — 1 o —2|—1 —3|—1 —3|—2 —3
1062 022 +5 +5/{+6 + s5|+4 + 4|+5 + 4|+ 4 + 3
0970 ogjo |+ 3 + 4|+3 +4|+3 +3|+4 + 4|+ 2 + 3
o912 og0 | —3 —=2|—3 —1|—3 —1|—2 —1|— 3 — 2
0845 o46 | —5 —3|—4 —2|—4 —2|—3 —2|—4 —2
0795 039 + s + 8/ +6 + 9|+ 6 + 8|4+ 8 H+10|+ 7 + 9
0732 o6 |—9 —5|—8 —5|—8 —5s5i—35 —3|—7 — 4
o660 o51 + 1 +5|+2 4+ 4\+3 +6|+5 4+ 97+ 4 + 7
0572 os4 |+4 +7|+5 +6|+5 +7|+8 + 8|+ 7 + 8
0490 67 | —5 —4|—5 —4|—4 —4|—3 —3|{—3 —3
0412 063 o o o o o o o o o o
0330 064 — 1 — 1
0245 062 + 2 + 2
o1bo o071 — 7 — 7 The same The same The same The same
o100 059 + 5 + 5
0040 obo + 4 T+ 4

and the D-solutions are less good than the U,
indicating that the limb darkening of the small star
is not large. So the secondary minimum cannot give
a clear decision which of the different values of limb
darkening for the large star should be preferred.

Addendum. After our computations were finished
an article by Dr. A. HNATEK appeared?), where the
same method is used, viz. to find the most probable
value of an element by computing the sum total of
error squares for different hypotheses. Dr. HNATEK’s
conclusions, however, are opposite to ours; he gives
a result for the limb darkening (in the case of KR
Cygni) in 3 decimals (making use of 22 normals with
a mean error of oo3™), whereas we found (from
61 normals with a m.e. of 0'oo4®) that even the first
decimal was unreliable. The source of this difference

1) A. HNATEK, Ueber die Bestimmung der Randverdunkelung bei

may be traced firstly to his exclusion of 9 normals
simply because they are deviating from the light-
curve more than o'029® and retaining only the nor-
mals situated close to the curve—a procedure con-
trary to the principles of error theory. Further on he
treats the points taken from a mean curve as if they
were observed quantities; the well marked and sharp
minimum of 2¢? in this case can have no real signifi-
cance. A second source of discrepancy is this that
Dr. HnatEK takes a fixed value for the duration of
the eclipse, by increasing the uniform value 02264
to the estimated amount of o'250¢ for all his cases.
If this duration is taken constant then there is of
course one solution with corresponding limb dark-
ening that fits better than other solutions. Other
assumptions as to the duration of the eclipse would
have procured other values of limb darkening with
nearly the same representation of observational data.

Bedeckungsverdnderlichen, A.N. 6260, 261, 361.
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